On global well-posedness for the Einstein-Maxwell-Euler system in Bondi coordinates

ثبت نشده
چکیده

We analyze the Einstein-Maxwell equations for an irrotational stiff fluid. Under the spherical symmetry assumption on the space-time, in Bondi coordinates, the considered model is reduced to a nonlinear evolution system of partial integrodifferential equations. Assuming regularity at the center of symmetry and that the matter content of the initial light cone is the so-called null dust, the characteristic initial value problem associated to the obtained system is solved globally by a contraction mapping argument. In future work we will address the issue of global well-posedness for the considered model in other physically interesting cases where the matter content of the initial light cone is not the null dust. MATHEMATICS SUBJECT CLASSIFICATION (2010). 35A01, 35A02, 35A09, 35B06, 35Q31, 45K05, 76W05, 83C22.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Analysis and General Relativity

Geometric analysis can be said to originate in the 19’th century work of Weierstrass, Riemann, Schwarz and others on minimal surfaces, a problem whose history can be traced at least as far back as the work of Meusnier and Lagrange in the 18’th century. The experiments performed by Plateau in the mid-19’th century, on soap films spanning wire contours, served as an important inspiration for this...

متن کامل

Well-Posedness of the Einstein–Euler System in Asymptotically Flat Spacetimes

We prove a local in time existence and uniqueness theorem of classical solutions of the coupled Einstein–Euler system, and therefore establish the well posedness of this system. We use the condition that the energy density might vanish or tends to zero at infinity and that the pressure is a certain function of the energy density, conditions which are used to describe simplified stellar models. ...

متن کامل

Well-Posedness of Einstein-Euler Systems in Asymptotically Flat Spacetimes

We prove a local in time existence and uniqueness theorem of classical solutions of the coupled Einstein–Euler system, and therefore establish the well posedness of this system. We use the condition that the energy density might vanish or tends to zero at infinity and that the pressure is a certain function of the energy density, conditions which are used to describe simplified stellar models. ...

متن کامل

Global Well-posedness for the Euler-boussinesq System with Axisymmetric Data

In this paper we prove the global well-posedness for the three-dimensional EulerBoussinesq system with axisymmetric initial data without swirl. This system couples the Euler equation with a transport-diffusion equation governing the temperature.

متن کامل

Global Well-posedness for Euler-boussinesq System with Critical Dissipation

In this paper we study a fractional diffusion Boussinesq model which couples the incompressible Euler equation for the velocity and a transport equation with fractional diffusion for the temperature. We prove global well-posedness results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1970